A new class of scalable parallel pseudorandom number generators based on Pohlig-Hellman exponentiation ciphers
نویسنده
چکیده
We propose a new class of pseudorandom number generators based on Pohlig-Hellman exponentiation ciphers. The method generates uniform pseudorandom streams by encrypting simple sequences of short integer messages into ciphertexts by exponentiation modulo prime numbers. The advantages of the method are: the method is trivially parallelizable by parameterization with each pseudorandom number generator derived from an independent prime modulus, the method is fully scalable on massively parallel computing clusters due to the large number of primes available for each implementation, the seeding and initialization of the independent streams is simple, the method requires only a few integer multiply-mod operations per pseudorandom number, the state of each instance is defined by only a few integer values, the period of each instance is different, and the method passes a battery of intrastream and interstream correlation tests using up to 10 pseudorandom numbers per test. We propose an implementation using 32-bit prime moduli with small exponents that require only a few 64-bit multiply-mod operations that can be executed directly in hardware. The 32-bit implementation we propose has millions of possible instances, all with periods greater than 10. A 64-bit implementation depends on 128-bit arithmetic, but would have more than 10 possible instances and periods greater than 10.
منابع مشابه
Efficient Primitives from Exponentiation in Zp
Since Diffie-Hellman [14], many secure systems, based on discrete logarithm or DiffieHellman assumption in Zp, were introduced in the literature. In this work, we investigate the possibility to construct efficient primitives from exponentiation techniques over Zp. Consequently, we propose a new pseudorandom generator, where its security is proven under the decisional Diffie-Hellman assumption. ...
متن کاملFast generators for the Diffie-Hellman key agreement protocol and malicious standards
The Diffie-Hellman key agreement protocol is based on taking large powers of a generator of a prime-order cyclic group. Some generators allow faster exponentiation. We show that to a large extent, using the fast generators is as secure as using a randomly chosen generator. On the other hand, we show that if there is some case in which fast generators are less secure, then this could be used by ...
متن کاملSome Methods of Parallel Pseudorandom Number Generation
We detail several methods used in the production of pseudorandom numbers for scalable systems. We will focus on methods based on parameterization, meaning that we will not consider splitting methods. We describe parameterized versions of the following pseudorandom number generation: 1. linear congruential generators 2. linear matrix generators 3. shift-register generators 4. lagged-Fibonacci ge...
متن کاملDistributed Multi-user, Multi-key Searchable Encryptions Resilient Fault Tolerance
In this paper, a construction of distributed multi-user, multikey searchable encryptions is proposed and analyzed. Our scheme leverages a combination of the Shamir’s threshold secret key sharing, the Pohlig-Hellman function and the ElGamal encryption scheme to provide high reliability with limited storage overhead. It achieves the semantic security in the context of the keyword hiding, the sear...
متن کاملFast Pseudorandom Generator based on Packed Matrices
Pseudorandom generators are a basic foundation of many cryptographic services and information security protocols. We propose a modification of a previously published matricial pseudorandom generator that significantly improves performance and security. The resulting generator is successfully compared to world class standards. Key-Words: Pseudorandom Generator, Stream Ciphers, Binary Matrices, C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1411.2484 شماره
صفحات -
تاریخ انتشار 2014